当前位置: 首页 > 新闻中心 > 学术活动 > 正文

Decentralized ADMM for Factorization-based Low-rank Matrix Estimation

发布日期:2025-04-17点击数:

报告人:练恒 教授 (香港城市大学)

时间:2025年04月25日 10:30-

地点:600cc全讯白菜LD402


摘要:We consider the problem of recovering a low-rank matrix in a distributed setting, based on a convex loss function and non-convex matrix factorization. We use a linearized and decentralized alternating direction method of multipliers (ADMM) algorithm to compute the consensus solution. We establish local linear convergence (up to the approximation error when the unstrained solution is not exactly low-rank) of the method despite the optimization problem is non-convex due to the factorization. Numerical examples are presented to illustrate the performance.


邀请人: 夏小超


欢迎广大师生积极参与!



关于我们
600cc全讯白菜的前身是始建于1929年的600全讯白菜网址理学院和1937年建立的600全讯白菜网址商学院,理学院是600全讯白菜网址最早设立的三个学院之一,首任院长为数学家何鲁先生。